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Abstract 

Objectives. To explore the notion of mutation-centric pharmacogenomic relation extraction and to 
evaluate our approach against reference pharmacogenomic relations. 

Methods. From a corpus of MEDLINE abstracts relevant to genetic variation, we identify co-occurrences 
between drug mentions extracted using MetaMap and RxNorm, and genetic variants extracted by EMU. 
The recall of our approach is evaluated against reference relations curated manually in PharmGKB. We 
also reviewed a random sample of 180 relations in order to evaluate its precision. 

Results. One crucial aspect of our strategy is the use of biological knowledge for identifying specific 
genetic variants in text, not simply gene mentions. On the 104 reference abstracts from PharmGKB, the 
recall of our mutation-centric approach is 33-46%. Applied to 282,000 abstracts from MEDLINE, our 
approach identifies pharmacogenomic relations in 4534 abstracts, with a precision of 65%. 

Conclusions. Compared to a relation-centric approach, our mutation-centric approach shows similar 
recall, but slightly lower precision. We show that both approaches have limited overlap in their results, 
but are complementary and can be used in combination. Rather than a solution for the automatic 
curation of pharmacogenomic knowledge, we see these high-throughput approaches as tools to assist 
biocurators in the identification of pharmacogenomic relations of interest from the published literature. 
This investigation also identified three challenging aspects of the extraction of pharmacogenomic 
relations, namely processing full-text articles, sequence validation of DNA variants and resolution of 
genetic variants to reference databases, such as dbSNP. 
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1 Introduction 
One aspect of personalized medicine is better adaptation of therapeutic drugs to the specific situation of 
a given patient, part of which is determined by his or her unique genetic make-up. Pharmacogenomics 
attempts to assess the influence of genetic variation on drug response [10, 28]. One poster child of 
pharmacogenomics is the drug warfarin, an anticoagulant widely prescribed for the prophylaxis and 
treatment of thromboembolic phenomena in patients with deep vein thrombosis and atrial fibrillation. 
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Warfarin has a narrow therapeutic index, that is, small changes in the dose result in important variations 
of the therapeutic effect. For an anticoagulant, this means either insufficient anticoagulation and risk of 
thrombosis if the dose is too low, or excessive anticoagulation and increased hemorrhagic risk if the 
dose is too high. Since a large fraction of the therapeutic effect of warfarin is dependent on genetic 
variation, it has been shown that testing patients for variations in specific genes can help determine the 
initial dose and enhance clinical outcomes [18]. More specifically, CYP2C9 and VKORC1 genotype 
information can be integrated into algorithms used for the determination of the maintenance dose of 
warfarin, outperforming traditional algorithms (not using genotype information), especially for patients 
requiring low or high doses [18]. Examples of allelic variants include the point mutation G3673A, 
associated with response to a lower dose of warfarin [25]. The exact place of CYP2C9 and VKORC1 
genotyping in anticoagulation with warfarin has been subject to debate [11]. However, recent studies 
have demonstrated lower risk of hospitalization for hemorrhage or thromboembolism in patients for 
which genetic information had been determined [9]. While genetic information is not yet used routinely 
with warfarin prescription, CYP2C9 and VKORC1 genotyping is widely available, and the Food and Drug 
Administration’s standard product label for warfarin now discusses the practical influence of allelic 
variation on the dose needed by specific patient groups. 

The biomedical literature is the primary vehicle for reporting the association between gene variants and 
drugs. Pharmacogenomic information is generally extracted from text and curated manually in order to 
create reference knowledge bases, such as PharmGKB [16, 19]. Information extraction can also be 
automated using natural language processing (NLP) tools [12]. However, text mining approaches to 
extracting pharmacogenomic knowledge generally show limited precision [13]. Our goal here is to 
leverage biological knowledge to increase the performance of information extraction methods. In 
previous work [24], we exploited the biomedical literature using a method based mainly on co-
occurrences, with limited success. We now apply the lessons learned from this preliminary work to 
improve our methods. The singlemost important element is the identification of allelic variants. Towards 
this end, we introduce EMU [8], an extractor of mutations, to complement our original approach. 

The objectives of this study are both to explore the notion of mutation-centric pharmacogenomic 
relation extraction and to evaluate our approach against reference pharmacogenomic relations. 
Additionally, we compare our approach to a relation-centric approach and we outline the potential of 
our approach to support the curation of pharmacogenomic relations. 

2 Background 

2.1 PharmGKB 
PharmGKB [19] aims to collect, gather and communicate the knowledge about the impact of human 
genetic variations on drug response. PharmGKB curation efforts are concentrated on a small set of very 
important pharmacogenes (referred to as VIP genes), for which a comprehensive domain expert 
annotation is provided. For these genes, the specific genetic variants are identified, along with related 
drugs and phenotypes. The articles from which the information was extracted are listed as evidence. It 
must be noted, however, that pharmacogenomic knowledge in PharmGKB is curated from a limited set 
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of high-quality journals and for a small number of drugs and genes of particular interest, and is therefore 
not comprehensive. 

2.2 Approaches to extracting pharmacogenomic information 
Extracting pharmacogenomic information from the biomedical literature, i.e., information about drugs, 
phenotypes, gene variants and their interrelations, can be seen as a specific task in the broader 
discipline of text mining (See [1, 29] for a review of text mining). A recent review article provides a rich 
description of the state of the art [13] and we will therefore keep our own review of related work to a 
minimum. 

As summarized in [13], approaches to extracting pharmacogenomic relations share many features. 
Common to all approaches is the identification of named entities of interest (drugs, diseases, genes and 
their variants) from the biomedical literature, relying on dictionaries, rules or machine learning 
techniques. Analogously, the identification of the relations among these entities generally relies on the 
presence of these entities within a given span of text, i.e., co-occurrence. Additional cues are used to 
avoid false positive relations, including statistical cues (e.g., frequency of co-occurrence) and linguistic 
cues (e.g., syntactic dependencies among entities). Models of such relations can also be identified 
through machine learning approaches. 

Some of the systems developed recently were presented at the workshop on “Mining the 
pharmacogenomics literature” organized at the Pacific Symposium on Biocomputing 2011. Interestingly, 
the following systems all leverage dependency graphs, i.e., graphs representing the syntactic structure 
of sentences, to extract pharmacogenomic relations, and can be thought of as “relation-centric 
approaches”. Initially developed for event extraction in the BioNLP Shared Task, JReX was adapted to 
gene-drug relation extraction [5]. Analogously, the OntoGene Relation Miner developed for extracting 
protein-protein interactions was extended to support the extraction of pharmacogenomic relations [26]. 
Not surprisingly, the largest pharmacogenomic text mining effort was done by the researchers 
associated with PharmGKB curation at Stanford University [7]. Since we compare our results to theirs, 
their approach is described later in the Discussion section.  

Although not specific to the extraction of pharmacogenomic relations, some recent work in biomedical 
information extraction is relevant to our investigation. OpenDMAP, the Open source Direct Memory 
Access Parser, developed at the University of Colorado is an ontology-driven system that achieves high 
precision [17]. The use of biological knowledge has been shown to increase the performance of 
information extraction systems [20]. In particular, the use of nucleotide and amino acid sequences, 
leveraged by EMU for extracting mutations from text, has also been identified as a key element for the 
normalization of ambiguous gene names among species in the GNAT system [15]. 

The specific contribution of this work is not the development of a new method, but rather the 
combination of existing tools and techniques (MetaMap, RxNorm filtering, EMU) into a novel strategy 
for identifying pharmacogenomic relations. While based on co-occurrence between genes and drugs, 
our strategy is characterized by the use of biological knowledge for identifying specific genetic variants 
in text. Our approach can therefore be termed a “mutation-centric approach”. 
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3 Datasets and methods 
Our approach to extracting pharmacogenomic information from text takes advantage of biological 
knowledge to increase the precision of the simple co-occurrence approach. Drug mentions and genetic 
variants are identified in MEDLINE abstracts in order to establish a list of <article, drug, genetic variant> 
relations. We present an example illustrating the identification of point mutations and drug mentions. 
The applicability of our high-throughput method is verified on a large set of MEDLINE abstracts relevant 
to genetic variation. Finally, our results are evaluated against reference relations curated manually in 
PharmGKB.  

3.1 Identifying drugs 
We identify drugs in text by using a generic biomedical entity recognition system, MetaMap, and 
restricting its output with the drug-specific resource RxNorm. 

MetaMap [2] is a medical concept recognizer developed by the National Library of Medicine. MetaMap 
annotates biomedical text with concepts from the Unified Medical Language System (UMLS) [3]. In 
practice, MetaMap associates a UMLS concept unique identifier with any medical concept recognized in 
the text. Moreover, it is important to map drugs to a reference terminology in order to facilitate 
comparisons across resources. Therefore, we filter and normalize the concepts extracted by MetaMap 
using a drug-specific resource, RxNorm. 

RxNorm [23] is a standardized nomenclature for clinical drug entities developed by the National Library 
of Medicine. RxNorm is one of a suite of designated standards for use in U.S. Federal Government 
systems for the electronic exchange of clinical health information. The RxNorm model distinguishes 
between various types of drug entities (e.g., ingredient, precise ingredient, brand name) and asserts 
relations among these types, making it possible to navigate among them. RxNorm is integrated in the 
UMLS. In practice, we used the RxNorm API [4] to perform the filtering and normalization steps. 

Filtering. From all the biomedical concepts extracted by MetaMap, only those concepts present in 
RxNorm as drug ingredients are selected, ensuring that only drug concepts are retained. Molecules such 
as amino acids, simple sugars (e.g., glucose) and inorganic elements (e.g., calcium) are listed as 
ingredients in RxNorm. However, when mentioned in the biomedical literature, these molecules rarely 
refer to clinical drugs. Therefore, we eliminate them from the list of drugs identified by RxNorm. 

Normalization. Variation in drug names is generally captured by the UMLS, where synonymous names 
are associated with the same concept. In contrast, salt and non-salt ingredients (atorvastatin and 
atorvastatin calcium) denote different entities in the UMLS. For the purpose of relating drugs to genetic 
variants, it is preferable to ignore such differences. We leverage RxNorm relations to aggregate drug 
entities at the appropriate ingredient level. 

3.2 Identifying genetic variants 
We identify point mutations in text and attempt to resolve them to reference Single Nucleotide 
Polymorphisms (SNPs) in dbSNP [21, 27] whenever possible. While methods such as MutationFinder [6] 
have been developed to extract mutational information from biomedical text with high precision, these 
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methods lack the mutation-gene associations required here in order to relate drugs to specific genetic 
variants. In prior work, we developed EMU [8] (Extractor of Mutations) to identify point mutations and 
their associated genes in biomedical text. (A detailed example of identification of a point mutation by 
EMU is presented in the next section.) One original feature of EMU compared to other such tools is to 
leverage biological information for the validation of the mutations extracted against reference 
sequences. More specifically, for candidate mutations identified in abstracts with regular expressions 
specifically crafted for capturing the many ways in which mutations are expressed in text, the protein 
products of the corresponding genes are checked for the possible existence of a mutation at the location 
indicated (i.e., we verify that the wild type amino acid recorded in the given mutation corresponds to 
the actual amino acid in the specified protein sequence position). Finally, EMU attempts to resolve each 
variant to an identifier (rsid) from the reference database of SNPs, dbSNP. Of note, while EMU is 
designed to identify mentions of mutations referring to either nucleotide or amino acid sequences, only 
the protein mutations can be validated against reference sequences. 

In our mutation-centric approach, specific genetic variants, not only gene mentions, are identified in 
text. Moreover, whenever possible, the genetic variants are validated against reference sequences and 
resolved to the reference database dbSNP. 

In summary, after applying the drug and gene variant identification methods to a set of MEDLINE 
abstracts, we obtain a smaller set of abstracts in which we have identified pharmacogenomic relations 
of the form <article, drug, genetic variant>. 

3.3 Extended example 
In order to illustrate how pharmacogenomic relations are identified in text, we use the following text 
fragment from the abstract of a PubMed article (PMID 12492608) [14]: A noncoding single nucleotide 
polymorphism (SNP) in exon 26 3435C > T of the highly polymorphic MDR1 gene has been demonstrated 
to alter digoxin absorption […]. 

Genetic variant. In this sentence, EMU identified a DNA mutation. “3435C > T” denotes a single 
nucleotide polymorphism (SNP) in which the nucleotide C is substituted by T in position 3435 on the 
reference sequence NM_000927.3 (chromosomal position 87138645 on chromosome 7), corresponding 
to the human gene ABCB1 (for which MDR1 is a synonym). This SNP can be resolved to rs1045642 in the 
reference database of SNPs, dbSNP, which validates the mutation identified by EMU. (Since EMU does 
not support sequence validation for DNA mutations, resolution to dbSNP of the genetic variant 
identified by EMU was performed manually in this case). 

Drug. MetaMap identified the drug digoxin in the sentence, which it mapped to the UMLS concept 
C0012265. Since this drug is listed as an ingredient in RxNorm (RxCUI 3407), it was selected as a valid 
drug. 

Overall, our approach identified the relation <3435C>T/rs1045642, digoxin(RxCUI:3407)> from article 
PMID:12492608 as a potential pharmacogenomic relation. Of note, this relation is also among the gene 
variants curated in PharmGKB (ABCB1:3435T>C). 
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3.4 Application to a large set of MEDLINE abstracts 
In order to restrict the large MEDLINE corpus (over 20M citations) to a manageable dataset, we first use 
the PubMed search engine to select those abstracts in which pharmacogenomic information is most 
likely to be identified. In prior work, we determined that two Medical Subject Headings (MeSH) 
descriptors, “Mutation” OR “Polymorphism, Genetic”, were used most frequently as indexing terms in 
articles referenced in the PharmGKB VIP (very important pharmacogenes) dataset. Here, we further 
constrain the search by restricting it to articles published since 2000 (earlier abstracts are less likely to 
contain genomic information), in English, and for which an abstract is available. This PubMed search was 
performed in January 2011 and yielded 281,947 abstracts identified by their PubMed identifier (PMID). 
We also considered processing full-text articles, but despite the growth of PubMed Central over the past 
few years, a relatively small proportion of articles is publicly accessible and amenable to processing by 
our tools. (We come back to full-text processing in the discussion). Each abstract in this set was 
submitted to the drug and gene variant identification processes presented above. 

3.5 Evaluation 

3.5.1 Recall 
For evaluation purposes, we use a reference dataset of 104 articles corresponding to the PharmGKB VIP 
(very important pharmacogenes) dataset. We compare the <article, drug, genetic variant> relations we 
extracted to similar reference relations curated manually in PharmGKB. Here we evaluate recall, i.e., the 
ability of our methods to identify these relations from a set of reference documents. In PharmGKB, we 
concentrate on those <drug, genetic variant> relations that have undergone in-depth curation (“VIP 
annotations”). For example, for the drug warfarin, VIP annotations are provided only for the gene 
VKORC1, for which three variants are listed (G3673A, C6484T, G9041A). For each variant, MEDLINE 
abstracts are cited in reference (e.g., PMID: 16270629 for all 3 variants). In practice, PharmGKB provides 
<drug, allelic variant, article> relations. For the identification of allelic variants, we use the identifier 
from dbSNP (rsid) listed in PharmGKB. Drugs listed in PharmGKB are normalized with RxNorm, as was 
done for the drugs extracted from the literature. 

3.5.2 Precision 
Precision cannot be evaluated with this reference dataset, because PharmGKB is not exhaustive (i.e., 
other valid <drug, genetic variant> relations may be present in the reference set of PharmGKB abstracts, 
but not curated). In order to estimate precision, i.e., the ability of our approach to identify only 
pharmacogenomic relations, we selected a random sample of 180 relations extracted from the large set 
of MEDLINE abstract by our high-throughput approach. Each relation extracted was reviewed 
independently by two authors with expertise in medicine and bioinformatics. All differences were 
reconciled by consensus. We considered false positives those relations where the mutation does not 
correspond to the gene (e.g., non-human variants) and where the drug is not mentioned in a clinical 
context (e.g., folate used as a reagent). 
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4 Results 
The contribution of each step of the mutation-centric approach applied to a large set of MEDLINE 
abstracts is briefly presented, followed by the evaluation of our approach in terms of recall and 
precision. 

4.1 Application to a large set of MEDLINE abstracts 
The number of abstracts selected at each step of our approach is shown in Figure 1. The initial PubMed 
search yielded 281,947 abstracts. Of these, 35,926 (12.7%) were identified by EMU as containing 
mention of some point mutation with its associated gene. A drug was identified by MetaMap and 
RxNorm in 63,027 abstracts (22.3%), for a total of 1970 unique drugs. (The number of unique mutations 
is not known as the mutations have not been normalized.) Overall, we found a total of 12,590 <drug, 
genetic variant> relations in 4,534 abstracts. 

 

Figure 1. Mutation-centric approach applied to a large set of MEDLINE abstracts 
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4.2 Evaluation 

4.2.1 Recall 
The proportion of reference abstracts identified as relevant by our approach measures the recall of our 
approach. Of the 104 reference abstracts, 34 (33%) were identified by our approach as containing 
mention of both a drug and a mutation. Recall can also be measured for the <drug, genetic variant> 
relations from the reference documents, using an rsid from dbSNP as genetic variant identifier. Of such 
441 reference relations, 57 (13%) were identified by our approach (with automatic or manual resolution 
to dbSNP). The 441 reference relations correspond to 85 unique drugs, 29 unique genetic variants and 
420 unique <drug, genetic variant> relations. A failure analysis is presented in the discussion. 

4.2.2 Precision 
Of the 180 <drug, genetic variant> relations randomly selected from the 12,590 relations extracted from 
the large set of MEDLINE abstracts, 65% have been identified as true positives by manual review. 

5 Discussion 
We first point out salient elements of the results and discuss their significance, before comparing our 
approach to the relation-centric approach developed at Stanford. Then we review some of the 
remaining challenges in extracting pharmacogenomic relations. Finally we present the application of this 
work to the prioritization of pharmacogenomic relations for biocurators. 

5.1 Findings and significance 
With a recall of 33% for the abstracts and 13% for the <drug, genetic variant> relations in comparison to 
the reference abstracts curated in PharmGKB, the performance of our approach seems inadequate. We 
performed an analysis and identified the following reasons for failure, illustrated in Figure 2. 
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Figure 2. Failure analysis: Number of abstracts from the reference dataset for which an explicit mention of genetic variant is 
found in the abstract and identified by EMU. 

Upon manual review of the 104 abstracts from the reference set, we determined that a genetic variant 
was explicitly mentioned in the abstract (or title) in only 46 cases (44%). In other words, in over half of 
the cases, biocurators have relied on information from full-text articles or external sources for extracting 
pharmacogenomic relations. (Issues in processing full-text articles are discussed later). 

From the 46 abstracts whose abstracts contain explicit mentions of genetic variants, EMU failed to 
identify the mutation in 12 cases. For example, from the text fragment the Gly49Arg389/Ser49Gly389 
diplotype in article PMID:12844134, EMU missed the two mutations: Gly49Ser (rs1801252) and 
Arg389Gly (rs1801253) in the human gene ADRB1. Although EMU handles concatenated mutations, 
here the concatenation pattern is unusual and ambiguous with more common patterns (confusion with 
Gly49Arg and Ser49Gly). 

The recall observed on the reference dataset arguably corresponds to the lower bound of the 
performance of our method. The reference dataset contains an uncharacteristically large proportion of 
older abstracts (30 of the 104 abstracts published before 2000), in which the precise genotypic 
information is less likely to be available and where genetic variation is less likely to be expressed in a 
standard manner. When measured on the subset of the reference abstracts published in 2000 or after, 
the performance of our method increases significantly. In fact 34 of the 74 recent abstracts are 
identified as relevant, increasing the recall to 46% (from 33%). 
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5.2 Comparison to Stanford’s relation-centric approach 

5.2.1 The relation-centric approach 
The Stanford group applied a relation-centric approach to extracting pharmacogenomic relations from 
MEDLINE [7]. They processed the whole MEDLINE dataset, parsed 87 million sentences in order to 
identify syntactic dependencies between two entities, one representing gene variation (e.g., VKORC1 
polymorphisms) and the other related to a drug (e.g., warfarin dose) or phenotype (e.g., 
thrombophlebitis). They used a simple lexicon-based method for identifying genes, drugs and 
phenotypes in text, but a linguistically-motivated method for identifying associations between entities in 
text from the syntactic structure of the sentence. They created an ontology to organize and normalize 
the types of entities and relationships encountered. However, no attempt was made to systematically 
identify gene variants or to resolve them to reference databases. They extracted over 41,000 <gene 
variation entity, relationship, drug/phenotype entity> relations, with a precision of 88% (evaluated on a 
sample of 220 relations). The Stanford group shared with us the list of abstracts from which a 
pharmacogenomic relation had been identified, but not the relations themselves. Applied to our subset 
of 282,000 MEDLINE abstracts, the Stanford approach identified 2764 abstracts containing 
pharmacogenomic relations. 

5.2.2 Contrasting the two approaches 
The identification of the relation between genetic variants and drugs differs in two respects between 
the two approaches, namely in scope and extraction method. The mention of a genetic variant is 
identified directly in the mutation-centric approach, while the relation-centric approach first detects a 
gene name and then the indication of variation through a modifier (e.g., VKORC1 SNP). Drug 
identification relies on dictionaries in both cases, but the relation-centric approach identifies not only 
drugs, but also phenotypes related to genetic variants. Finally, the relation is approximated by simple 
co-occurrence within the abstract in the mutation-centric approach, while it is confined to a sentence 
and derived from its syntactic structure in the relation-centric approach. 

5.2.3 Comparison 
The comparison assesses whether a given abstract selected as the source of pharmacogenomic relations 
by one approach is also selected by the other. The relations themselves are not compared, because only 
the set of abstracts in which relations were identified by Stanford was made available to us. 

Both approaches show limited recall. Of the 104 abstracts of the reference dataset, 34 (33%) were 
identified by our mutation-centric approach, while 36 (35%) were identified by the relation-centric 
approach. In both cases, recall is inadequate to support automatic biocuration. The advantage of both 
approaches, however, is that they are fully automated and can be used to scan the biomedical literature 
systematically. 

Both approaches show state-of-the-art precision. In the absence of a gold standard for pharmacologic 
relations, both groups relied on manual review of a limited set of relations to evaluate the precision of 
their approach. Not surprisingly, more false positives are identified by our co-occurrence-based 
approach than by Stanford’s approach where linguistic cues are required to support the relation. 
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However, with a precision of 65% for the mutation-centric approach and 88% for the relation-centric 
approach, the performance of both approaches reflects the state of the art in relation extraction. 

Complementarity between the two approaches. Of the 104 abstracts of the reference dataset, eight 
abstracts (7.7%) are found by both approaches. The overlap between the two approaches is also limited 
on the set of 282,000 MEDLINE abstracts, where only 224 abstracts are identified by both methods, 
representing 4.9% of the abstracts identified by the mutation-centric approach and 8.1% of the 
abstracts identified by the relation-centric approach. 

Given the differences between the two approaches, we did not expect a large overlap between the two 
result sets. However, the proportion of abstracts identified by both approaches is extremely limited. 
Since both approaches have reasonable precision, the two approaches are complementary and can be 
used jointly to help identify pharmacogenomic relations from the biomedical literature. For example, 
our mutation-centric approach identified 34 of the 104 reference abstracts, while Stanford’s relation-
centric approach identified 36, with an overlap of eight. Therefore the two approaches identified 62 
distinct abstracts and the recall of the combined approaches on the reference abstracts is 60%, i.e., 
significantly higher than the recall of 35% obtained by each approach taken in isolation. 

5.3 Remaining challenges 
Processing full-text articles, sequence validation of DNA variants and resolution of genetic variants to 
reference databases are three aspects of the extraction of pharmacogenomic relations that remain 
particularly challenging. 

5.3.1 Processing full-text articles 
As mentioned earlier, we chose to process abstracts rather than full-text articles in this study, mainly 
because a majority of full-text articles are still not available in public access repositories, such as 
PubMed Central [22]. In fact, of the 104 articles in the reference dataset, only 33 (32%) are available 
there. Moreover, when available, full-text articles often need to be converted from PDF format, which is 
suboptimal as it may result in loss of the document structure. 

Using our mutation-centric approach, we processed the 33 articles available in full text downloaded 
from PubMed Central. While 11 of these 33 articles (33%) had already been identified as a source of 
pharmacogenomic relations based on the abstract alone, five additional articles were identified when 
processing the full text, increasing recall to 48%. This limited experiment suggests that two thirds of the 
relevant articles can be identified based solely on the abstracts. 

5.3.2 Sequence validation of DNA variants 
EMU failed to provide sequence validation for 26 of the 34 mutations it identified from the reference 
dataset, because these mutations were described in reference to nucleotide sequences, rather than 
amino acid sequences. While we were able to confirm the validity of these 26 mutations manually using 
dbSNP as a reference, automatic sequence validation remains challenging for DNA mutations, because 
comparing nucleotide sequences (combinations of four nucleotides) is likely to yield incorrect 
associations more frequently than when comparing amino acid sequences (combinations of 20 amino 
acids). Overall, sequence validation could be obtained for less than one third of the mutations detected 
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by EMU. While we showed in earlier work that sequence validation significantly contributed to the 
precision of EMU [8], such requirement also significantly decreases recall. In practice, sequence 
validation was not required as part of the identification of genetic variants in this study. 

5.3.3 Resolution of genetic variants to reference databases 
References databases of point mutations, such as dbSNP, are still incomplete, i.e., not all genetic 
variants described in the biomedical literature have been recorded in dbSNP. Therefore, only a fraction 
of the genetic variants identified by EMU can be resolved into an entry in dbSNP and associated with an 
rsid. Examples of mutations automatically resolved to dbSNP by EMU include Ala893Ser identified in 
gene MDR1 from the article PMID:11503014 and resolved to the variant rs2032582. In contrast, EMU 
failed to resolve the DNA mutation C3435T in the same gene from PMID:10716719 (resolved manually 
to rs1045642). However, we showed that failure by EMU to resolve a given mutation to dbSNP (for a 
nucleotide or amino acid sequence) was not indicative of invalid mutation identification. 

5.4 Application to support the curation of pharmacogenomic relations 
Our approach to identifying pharmacogenomic relations was never envisioned as a solution to 
automatic curation of pharmacogenomic knowledge. The identification of pharmacogenomic relations is 
only one element of the development of a resource, such as PharmGKB, as biocurators generally collect 
additional information, including allele frequency and odds-ratios, in order to precisely characterize the 
influence of a given genetic variant on drug effect. However, we argue that high-throughput 
approaches, such as ours, can help support and prioritize biocuration efforts by providing enhanced 
information retrieval and quantification of the frequency of the pharmacogenomic relations. 

Enhanced information retrieval. Biocuration efforts are limited by the resources of teams, such as 
PharmGKB. Therefore, biocurators typically restrict their effort to a small number of articles from 
selected journals and provide in-depth curation only for a limited set of genetic variants. In contrast, 
high-throughput approaches including our mutation-centric approach and Stanford’s relation-centric 
approach can be used for scanning the literature systematically and regularly. Even if their recall is 
limited, the precision of these approaches is sufficient to make useful recommendations to biocurators. 
Recall can be increased by combining several complementary high-throughput approaches and by 
processing full-text articles when available. Gains in precision can be obtained through additional 
filtering (e.g., on journal, publication date and MeSH indexing). Moreover, our mutation-centric 
approach would help biocurators identify all genetic variants mentioned in the literature for a drug of 
interest. 

Quantification of the frequency of the pharmacogenomic relations. One issue for biocurators is to 
prioritize the drugs and genetic variants on which to concentrate their efforts. High-throughput 
approaches can help perform automatic “surveillance” of the drugs and genetic variants discussed in the 
literature, as well as quantify the frequency of the pharmacogenomic relations for certain drugs or drug 
classes. For example, the top 15 drugs we identified in pharmacogenomic relations extracted from the 
290,000 MEDLINE abstracts, participate in 3197 pharmacogenomic relations. Among these 15 drugs, 
three tyrosine kinase inhibitors, gefitinib, imatinib and erlotinib, account for 18% of the 3197 relations 
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(and 4.6% of all relations). This example illustrates how drug classes of interest can easily be screened 
for their association with genetic variants and possibly given a higher priority in the curation process. 

6 Conclusion 
Several approaches to identifying pharmacogenomic relations from the biomedical literature have been 
investigated recently. In contrast to methods relying on sophisticated NLP techniques (e.g., Stanford’s 
relation-centric approaches), we propose a mutation-centric approach in which specific genetic variants, 
not only gene mentions, are identified in text and validated against reference sequences whenever 
possible. When evaluated against a reference set of abstracts from PharmGKB, our approach exhibited a 
recall of 33-46%, which is similar to the performance of relation-centric approaches. The precision of our 
approach is 65%. Moreover, we showed that mutation-centric and relation-centric approaches are 
complementary. This investigation identified three challenging aspects of the extraction of 
pharmacogenomic relations, namely processing full-text articles, sequence validation of DNA variants 
and resolution of genetic variants to reference databases, such as dbSNP. Given the limited performance 
of automatic approaches to identifying pharmacogenomic relations, the principal interest of these 
methods is their ability to process vast amounts of biomedical text automatically. Rather than a solution 
for the automatic curation of pharmacogenomic knowledge, we see these high-throughput approaches 
as tools to assist biocurators in the identification of pharmacogenomic relations of interest from the 
published literature. 

7 Acknowledgments 
The authors want to thank Adrien Coulet, Nigam H. Shah, Yael Garten, Mark Musen and Russ B. Altman 
(Stanford University) for sharing with us the list of MEDLINE abstracts in which they have identified 
pharmacogenomic relations using the relation-centric method reported in [7]. We would also like to 
thank Jim Mork for his help in the preparation of the MEDLINE dataset. This work was supported by the 
National Institutes of Health (NIH) through grant 1K22CA143148 (MGK, ED), and by the Intramural 
Research Program of the NIH, National Library of Medicine (OB, BR, DDF). 

8 Bibliography 
 

[1] S. Ananiadou, J. McNaught, Text mining for biology and biomedicine, Artech House, Boston, 
2006. 

[2] A.R. Aronson, F.M. Lang, An overview of MetaMap: historical perspective and recent advances, J 
Am Med Inform Assoc 17 (2010) 229-236. 

[3] O. Bodenreider, The Unified Medical Language System (UMLS): integrating biomedical 
terminology, Nucleic Acids Res 32 (2004) D267-270. 

[4] O. Bodenreider, L. Peters, RxNav: Browser and application programming interfaces for RxNorm, 
AMIA Annual Symposium, Washington, 2010, pp. 1330. 



14 
 

[5] E. Buyko, K. Hornbostel, U. Hahn, Extended study for extracting events between genes/proteins 
and drugs/active pharmaceutical ingredients (API) with JReX, PSB Workshop on Mining the 
Pharmacogenomics Literature, 2011, pp. Electronic proceedings. 

[6] J.G. Caporaso, W.A. Baumgartner, Jr., D.A. Randolph, K.B. Cohen, L. Hunter, MutationFinder: a 
high-performance system for extracting point mutation mentions from text, Bioinformatics 23 
(2007) 1862-1865. 

[7] A. Coulet, N.H. Shah, Y. Garten, M. Musen, R.B. Altman, Using text to build semantic networks 
for pharmacogenomics, J Biomed Inform 43 (2010) 1009-1019. 

[8] E. Doughty, A. Kertesz-Farkas, O. Bodenreider, G. Thompson, A. Adadey, T. Peterson, M.G. Kann, 
Toward an automatic method for extracting cancer- and other disease-related point mutations 
from the biomedical literature, Bioinformatics 27 (2010) 408-415. 

[9] R.S. Epstein, T.P. Moyer, R.E. Aubert, O.K. DJ, F. Xia, R.R. Verbrugge, B.F. Gage, J.R. Teagarden, 
Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo 
Warfarin Effectiveness study), J Am Coll Cardiol 55 (2010) 2804-2812. 

[10] W.E. Evans, M.V. Relling, Pharmacogenomics: translating functional genomics into rational 
therapeutics, Science 286 (1999) 487-491. 

[11] D.A. Flockhart, D. O'Kane, M.S. Williams, M.S. Watson, B. Gage, R. Gandolfi, R. King, E. Lyon, R. 
Nussbaum, K. Schulman, D. Veenstra, Pharmacogenetic testing of CYP2C9 and VKORC1 alleles 
for warfarin, Genet Med 10 (2008) 139-150. 

[12] Y. Garten, R.B. Altman, Teaching computers to read the pharmacogenomics literature ... so you 
don't have to, Pharmacogenomics 11 (2010) 515-518. 

[13] Y. Garten, A. Coulet, R.B. Altman, Recent progress in automatically extracting information from 
the pharmacogenomic literature, Pharmacogenomics 11 (2010) 1467-1489. 

[14] T. Gerloff, M. Schaefer, A. Johne, K. Oselin, C. Meisel, I. Cascorbi, I. Roots, MDR1 genotypes do 
not influence the absorption of a single oral dose of 1 mg digoxin in healthy white males, Br J 
Clin Pharmacol 54 (2002) 610-616. 

[15] J. Hakenberg, C. Plake, R. Leaman, M. Schroeder, G. Gonzalez, Inter-species normalization of 
gene mentions with GNAT, Bioinformatics 24 (2008) i126-132. 

[16] T. Hernandez-Boussard, M. Whirl-Carrillo, J.M. Hebert, L. Gong, R. Owen, M. Gong, W. Gor, F. 
Liu, C. Truong, R. Whaley, M. Woon, T. Zhou, R.B. Altman, T.E. Klein, The pharmacogenetics and 
pharmacogenomics knowledge base: accentuating the knowledge, Nucleic Acids Res 36 (2008) 
D913-918. 

[17] L. Hunter, Z. Lu, J. Firby, W.A. Baumgartner, Jr., H.L. Johnson, P.V. Ogren, K.B. Cohen, 
OpenDMAP: an open source, ontology-driven concept analysis engine, with applications to 
capturing knowledge regarding protein transport, protein interactions and cell-type-specific 
gene expression, BMC Bioinformatics 9 (2008) 78. 

[18] T.E. Klein, R.B. Altman, N. Eriksson, B.F. Gage, S.E. Kimmel, M.T. Lee, N.A. Limdi, D. Page, D.M. 
Roden, M.J. Wagner, M.D. Caldwell, J.A. Johnson, Estimation of the warfarin dose with clinical 
and pharmacogenetic data, N Engl J Med 360 (2009) 753-764. 

[19] T.E. Klein, J.T. Chang, M.K. Cho, K.L. Easton, R. Fergerson, M. Hewett, Z. Lin, Y. Liu, S. Liu, D.E. 
Oliver, D.L. Rubin, F. Shafa, J.M. Stuart, R.B. Altman, Integrating genotype and phenotype 
information: an overview of the PharmGKB project. Pharmacogenetics Research Network and 
Knowledge Base, Pharmacogenomics J 1 (2001) 167-170. 

[20] K. Livingston, H. Johnson, K. Verspoor, L. Hunter, Leveraging Gene Ontology annotations to 
improve a memory-based language understanding system, IEEE Fourth International Conference 
on Semantic Computing (ICSC) (2010) 40-45. 

[21] dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/, (last accessed: 5/18/2012). 
[22] PubMedCentral, http://www.ncbi.nlm.nih.gov/pmc/, (last accessed: 5/18/2012). 

http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/pmc/


15 
 

[23] S.J. Nelson, K. Zeng, J. Kilbourne, T. Powell, R. Moore, Normalized names for clinical drugs: 
RxNorm at 6 years, J Am Med Inform Assoc (2011). 

[24] B. Rance, D. Demner-Fushman, T. Rindflesch, O. Bodenreider, Exploring automatic approaches 
to extracting pharmacogenomic information from the biomedical literature, PSB Workshop on 
Mining the Pharmacogenomics Literature, 2010, pp. Electronic proceedings. 

[25] M.J. Rieder, A.P. Reiner, B.F. Gage, D.A. Nickerson, C.S. Eby, H.L. McLeod, D.K. Blough, K.E. 
Thummel, D.L. Veenstra, A.E. Rettie, Effect of VKORC1 haplotypes on transcriptional regulation 
and warfarin dose, N Engl J Med 352 (2005) 2285-2293. 

[26] F. Rinaldi, G. Schneider, S. Clematide, Mining complex Drug/Gene/Disease relations in PubMed, 
PSB Workshop on Mining the Pharmacogenomics Literature, 2011, pp. Electronic proceedings. 

[27] S.T. Sherry, M.H. Ward, M. Kholodov, J. Baker, L. Phan, E.M. Smigielski, K. Sirotkin, dbSNP: the 
NCBI database of genetic variation, Nucleic Acids Res 29 (2001) 308-311. 

[28] L. Wang, H.L. McLeod, R.M. Weinshilboum, Genomics and drug response, N Engl J Med 364 
(2011) 1144-1153. 

[29] P. Zweigenbaum, D. Demner-Fushman, H. Yu, K.B. Cohen, Frontiers of biomedical text mining: 
current progress, Brief Bioinform 8 (2007) 358-375. 

 

 


	1 Introduction
	2 Background
	2.1 PharmGKB
	2.2 Approaches to extracting pharmacogenomic information

	3 Datasets and methods
	3.1 Identifying drugs
	3.2 Identifying genetic variants
	3.3 Extended example
	3.4 Application to a large set of MEDLINE abstracts
	3.5 Evaluation
	3.5.1 Recall
	3.5.2 Precision


	4 Results
	4.1 Application to a large set of MEDLINE abstracts
	4.2 Evaluation
	4.2.1 Recall
	4.2.2 Precision


	5 Discussion
	5.1 Findings and significance
	5.2 Comparison to Stanford’s relation-centric approach
	5.2.1 The relation-centric approach
	5.2.2 Contrasting the two approaches
	5.2.3 Comparison

	5.3 Remaining challenges
	5.3.1 Processing full-text articles
	5.3.2 Sequence validation of DNA variants
	5.3.3 Resolution of genetic variants to reference databases

	5.4 Application to support the curation of pharmacogenomic relations

	6 Conclusion
	7 Acknowledgments
	8 Bibliography

